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Abstract. High-performance computing (HPC) demands high band-
width and low latency in I/O performance leading to the development
of storage systems and I/O software components that strive to provide
greater and greater performance. However, capital and energy budgets
along with increasing storage capacity requirements have motivated the
search for lower cost, large storage systems for HPC. With Burst Buffer
technology increasing the bandwidth and reducing the latency for I/O
between the compute and storage systems, the back-end storage band-
width and latency requirements can be reduced, especially underneath
an adequately sized modern parallel file system. Cloud computing has
led to the development of large, low-cost storage solutions where design
has focused on high capacity, availability, and low energy consumption
at lowest cost. Cloud computing storage systems leverage duplicates and
erasure coding technology to provide high availability at much lower cost
than traditional HPC storage systems. Leveraging certain cloud storage
infrastructure and concepts in HPC would be valuable economically in
terms of cost-effective performance for certain storage tiers. To enable
the use of cloud storage technologies for HPC we study the architec-
ture for interfacing cloud storage between the HPC parallel file systems
and the archive storage. In this paper, we report our comparison of two
erasure coding implementations for the Ceph file system. We compare
measurements of various degrees of sharding4 that are relevant for HPC
applications. We show that the Gibraltar GPU Erasure coding library
outperforms a CPU implementation of an erasure coding plugin for the
Ceph object storage system, opening the potential for new ways to ar-
chitect such storage systems based on Ceph.

4 The literature uses the term “stripe” for a set of data that is protected by RAID
or erasure coding implementation. The stripe is divided into kdata chunks and pro-
tected by m parity or coding chunks. In this paper, the term “strip” and “shard” are
used synonymously and refer to these chunks.



1 Introduction

With the compute core density increasing per node in the past decade in high-
performance computing (HPC), a trend that will likely continue for the next
decade, I/O bandwidth requirements per node have also increased. This in-
crease in computing power is applying pressure on the entire storage capacity
and bandwidth for HPC systems. To minimize the time required for applica-
tions to complete I/O operations for initialization, checkpoint/restart (CR), and
application result outputs, it is necessary to provide I/O bandwidth to the com-
pute nodes that is much higher than today’s petascale supercomputers. The
stated requirements for the exascale initiative is for applications to run 50 times
faster than they do on today’s 20PFLOP systems [21]. Los Alamos National
Labs (LANL) is introducing Burst Buffers (BB) as an intermediate tier between
the compute nodes and the Parallel File System (PFS) on Trinity. These BBs
use Solid State Disks (SSDs) and Nonvolatile RAM (NVRAM) to provide high-
speed storage to meet the faster IOPS and bandwidth requirements. BBs enable
the applications to complete the IO operations in an acceptable time for CR
or application recording task and get back to making forward progress on the
application problem solution [12].

Both the BB and PFS file systems are expensive and, like registers and cache
in the CPU memory hierarchy, are at the top of the storage pyramid, having
minimal size but much greater performance [12]. Requirements also provide the
constraints that the life time of the data in the compute node RAM is hours, the
life time in the BBs is hours, and the life time in the PFS is weeks. The BBs are
referred to as tier-1 in the storage pyramid and the PFSs are referred to as tier-2.
Data that is needed to be kept for longer periods of time may be stored on lower
tiers of the storage pyramid where lower latency and bandwidth requirements
may be defined but with greater availability requirements due to the longer
life of the data residence. The third layer of the storage stack, tier-3 storage
is referred to as the “campaign” storage layer, a pre-archive, longer term, and
higher capacity disk store [11]. This campaign storage layer is a strong candidate
for lower-cost, cloud-type storage that provides availability with erasure coding
and higher bandwidth than the fourth tier, the archive tier, which is magnetic
tape [16] at LANL. The Campaign storage tier has been designed to store data
for a period of time while the research project is actively computing so that it
can be quickly moved to the PFS and BB when needed for computation or to
the archive for longer term storage.

The key contribution of this paper is as follows. To enable the use of cloud
storage technologies for HPC, we study the architecture for interfacing cloud
storage between the HPC parallel file systems and the archive storage. In this
paper we show that computing erasure coding for a high degree of sharding on
the Ceph Object File System [38] with GPUs outperforms a modern Intel CPU,
opening the potential for new ways to architect such storage system based on
Ceph. For use cases where data are moved to object storage systems via single
points of mediation, such as the File Transfer Appliances (FTAs) in the LANL
Trinity system, these mediators may be equipped with GPUs to perform erasure



encoding and recovery at high speed and utilization. High degrees of sharding
along with sufficient coding shards determined by the disk failure rate can result
in lower capital costs and lower operating costs [13].

The remainder of this paper is organized as follows. We first discuss the
architecture and performance of Ceph, a high performance distributed storage
systems [38], particularly the plugin feature for erasure coding modules, review
RAID and discuss the exascale campaign storage requirements for Trinity (see
section 2). We also discuss the Gibraltar GPU erasure coding and decoding
library [4] there. In section 3, we discuss our implementation of the Ceph erasure
coding plugin using Gibraltar. We present our findings from our measurements
of our experiments in section 4. In section 5 we discuss other research using GPU
erasure coding for HPC storage followed by our conclusions in section 6.

2 Background

We utilize Ceph as a platform for our work because of its convenient plugin
architecture for erasure coding libraries. This structure enabled us to focus our
work on the Gibraltar library and to follow the implementation of the Ceph
plugin interfaces provided in its erasure code plugin classes. The existing erasure
coding plugins in Ceph provide us with well know baselines against which to
compare our results.

In previous work, we designed and reduced to practice a library that per-
forms erasure coding on GPU hardware, Gibraltar [3, 4]; this approach can fur-
ther lower the price/performance for storage systems and provide opportunities
for performing compute close to the data. One of the consequences of erasure
coding in the design of high performance distributed file systems is the high
computational and data transfer costs of reconstruction of a failed disk. By in-
cluding GPUs in the architecture, we provide additional compute resources that
can raise the achievable performance. As common disk drive storage capacities
have increased from 750GB in 2006 [9] to 10TB in 2016 [34], this architec-
ture performance enhancement will become even more important by off-loading
computation for erasure coding to the GPU.

2.1 Ceph

Ceph is a distributed high performance file system that decouples metadata
from data and provides a deterministic function for mapping metadata to data
location, CRUSH – Controlled Replication Under Scalable Hashing [37]. It is an
object storage system that uses peer-to-peer sharing of a compact hierarchical
description of the cluster configuration and replication policy. This innovation
distributes the computation to determine replica placement to any member of the
cluster, including clients, thus eliminating the serialization that would otherwise
result from determining data placement on a centralized metadata service. The
CRUSH algorithm uses rule sets to define policies on data placement that result
in evenly distributed storage of data across all of the Object Storage Devices



(OSDs) in the cluster. These rules also enforce availability policies; for example,
replicas must not be in the same rack or other defined failure domain in the data
center. Ceph implements the data storage layer of file systems with the library
librados, which exposes an interface to the Ceph object store. Traditional block
based file systems can access the Ceph cluster object storage via the RADOS

Block Device, a driver for Linux kernels based on librbd [39]. The Ceph POSIX file
system (CephFS) uses the Metadata Service (MDS), which provides the POSIX
compatible file name space features as well as the management of atomicity for
operations (file creation, file deletion, file renaming, attribute changes, permis-
sions, locks, etc). CephFS consults the MDS to provide the client with the layout
of a given file upon which operations are being performed.

In 2013, the Ceph community implemented a plugin framework to provide
erasure coding features [8]. The Ceph development team used the framework to
implement a concrete erasure coding capability using the Jerasure library [17].
The plugin includes an ErasureCode, ErasureCodeInterface, ErasureCodePlu-
gin, and ErasureCodePluginRegistry classes. Implementers of concrete plugins
can follow the example of the Jerasure plugin module in order to wrap their own
erasure coding library into Ceph. The mechanism is activated by Ceph pools,
which are configured to use replication or erasure coding with specific parame-
ters. Erasure coding provides for various configuration selections based on the
concrete implementation to include the algorithm, number of data shards, k,
that object stripes will be divided into and the number of equally sized coding
shards, m, that will be used to store the objects [7]. Choosing between repli-
cation or erasure coding for reliability trades space for computation. Choosing
higher degrees of sharding distributes the object stripes over a greater number
of disks which reduces the time required to put or get the data on the disk by
increasing parallelism. The disk read or write time for an object stripe is in-
versely proportional to the degree of sharding because the size of the shards are
inversely proportional to the degree of sharding (k). Erasure coding can survive
the loss of up to m shards. Where replication consumes raw storage at the rate
of n times the size of the object where n is equal to the number of replicas + 1,
the proportion of space used by k shards is usually about 20% of the size of the
data (which can survive the loss of 1 shard out of 5) [32, 36].

2.2 RAID

Since the redundant array of inexpensive disks/devices (RAID) was introduced
in 1988 by Patterson, Gibson and Katz [27] that provided an economical way for
systems to be more resilient against data loss compared to other options such
as pure mirroring, research has continued to provide more techniques for im-
proving availability of data and improving performance. The principle methods
for mitigating the loss of data resulting from media or system failure has been
replication, RAID and erasure coding. The design choices between these meth-
ods must be balanced between the higher cost of storage for replication of n x r
where n is the size of the data and r is the number of replicas plus one versus
the computational cost of parity generation for RAID and erasure coding.



Erasure coding provides a higher degree of durability in that the storage sys-
tem can survive the loss of a greater number of disks while using less additional
storage than replication [32, 36]. The property that erasure coding can provide
a higher order of redundancy by generating more than two parity disks has been
heavily studied by James Plank [17, 28, 29, 30]. Another consideration for data
reliability is locality. Storage subsystems that replicate data or store parity on
direct attached media can provide data storage services incurring a lower commu-
nications cost as compared to storage systems that distribute replicas or parity
throughout a set of storage nodes that are connected over a high speed network.
This particularly is the case of reconstructing parity for RAID 5, RAID6 as com-
pared to erasure coding where the minimum set of data or coding shards must
be copied over the network and be assembled in a contiguous memory location
for the erasure coding program to recompute the missing data or coding. After
the data are reconstructed, the repaired shards must be copied back to their
storage locations over the network. There is strong evidence that using erasure
coding with commodity hardware for durability in high performance computing
is more economical and faster than dedicated storage subsystems [31, 33]. For
instance, Microsoft has chosen to implement the storage systems in their Azure
cloud service using erasure coding [15]. A thorough treatment of performance
measurement for erasure coding is given in [14]. The power efficiency of erasure
coding has been discussed previously by Greenan [10]. Lastly, DACO proposes
a scheme where remote code is executed by disk drive controllers to update
parity directly on the media saving on the data transfer costs that are usually
associated with updates to erasure-coded stripes [20].

Storage services for high performance computing systems can be provided
by storage area networks (SANs), which provide data resilience and high speed
communications over specialized networks. Some high performance distributed
file systems rely on these types of storage providers where the responsibility for
data reliability is handled by the SAN [1, 2]. These file systems can also be
configured to provide availability in the event of the loss of data serving nodes
by providing multi-path connections to the SAN storage. The SAN subsystems
present storage volumes to the storage servers in the form of LUNs; these are
logical volumes of media blocks formed by the SAN subsystem that have the
resilience properties that have been specified by the administrator, providing
the semantics otherwise of a local disk volume.

The Gibraltar project demonstrated that erasure codes could be efficiently
generated and decoded with GPUs [3, 4, 5, 6]. The Gibraltar library was designed
to compute Reed-Solomon erasure codes for a wide range of k data shards and m

coding shards. We have used this library to provide GPU-assisted erasure coding
for Ceph through Ceph’s Erasure Coding Plugin subsystem.

2.3 System Requirements

The Los Alamos National Laboratory (LANL) has presented requirements for a
Campaign Storage System for the Trinity Super Computer[19]. The Campaign
Storage should have about 25PB capacity with future expansion capability. The



bandwidth should be between 20 to 25GB/s, which should increase with ca-
pacity. The files stored in the campaign storage system will not be updated in
place. The system should use archive-grade hard disk drives, and gain perfor-
mance through large scale parallel access. The system should use erasure coding
for reliability. The system is not intended for high duty cycle workloads [19].
LANL expects to have 20 to 25 batch file transfer agents (FTAs) to move data
between user home storage, Lustre PFS systems, archive storage and the cam-
paign storage [19]. These requirements imply that the FTAs will be able to move
about 1GB/s each not including enough additional performance to provide fault
tolerance.

LANL has also indicated the needed capability to store 1PB sized checkpoints
in the near future [19]. Baselining with archive storage disk drives with a capacity
of 8TB, it would require a minimum of 128 disk drives plus about 20% more for
the erasure coding overhead to store 1 PB. Given this capacity requirement, a rea-
sonable approach would be to use 128 data shards to distribute the 1PB file over
this number of disk drives. Choosing a ratio of 1 coding shard to 5 data shards
would require another 25 disk drives. Using 8TB disk drives, the 25PB campaign
storage system would therefore contain a minimum of 3,825drives. The big ad-
vantage to this large degree of sharding is the lower bandwidth requirement to
each of the target disk drives, 8MB/s in this example where there are 128 shards
and the FTA is delivering 1GB/s to the storage system, Eqn. refeqn:gbsecond.
In this case, the bandwidth requirement at the leaf OSD can be met with a
100Mb/s network and is well under the 150MB/s peak performance for the
current archive type 8TB disks.

(

1GB

second

128shards

)

(1)

3 Ceph Erasure Coding Plugin Implementation for

Gibraltar

Ceph provides a well-defined interface for integrating erasure coding libraries
into the product. This mechanism provides a means to incorporate new erasure
coding libraries into the Ceph file system. The plugin architecture is modularized
into two functional areas: registration of erasure coding profiles and the inter-
face for the erasure coding/decoding services of the library [7]. Gibraltar can
theoretically provide up to 256 data and coding shards in a stripe [4], although
practical limits currently restrict k+m to fewer total shards (see section 4.2).
Ceph erasure coded profiles can be constructed with many combinations of k
and m.

The Ceph ErasureCodePlugin class is subclassed in our work in order to
instantiate a Gibraltar instance; this instance is configured according to the pa-
rameters provided by the Ceph administrator command to create an erasure
code profile. Gibraltar uses the NVIDIA R© CUDA R© library [25] to offload com-
putation and retrieve results from the K40 GPU [24] in our system. The subclass



ErasureCodePluginGibraltar calls the Gibraltar gib cuda driver function to ini-
tialize a CUDA context for the profile. The profile can then be used to create
an erasure coded pool in Ceph.

The Ceph ErasureCode class is subclassed in our work to implement the
Ceph ErasureCodeInterface functions for the Gibraltar library. We modified the
Gibraltar erasure code library application programmer interface (API) to make
it compatible with the Ceph architecture. Ceph uses a bufferlist data structure
and aggregates k + m shards for each erasure coded stripe where each shard is
referenced by a pointer to the head of the list data structure for the shard. The
call to Gibraltar has been modified to provide an array of these pointers and the
logic copies each shard of data onto a contiguously allocated GPU memory block.
The outputs of the coding or decoding are copied back to the Ceph bufferlist
data structures in a similar way. In figure 1, we show how data is passed to
the plugin. The plugin appends m coding shards onto the Bufferlist object and
includes the pointers to these data structures in the array. New versions of the
Gibraltar functions to encode and regenerate were created, whereas the original
functions operated on a contiguous data block that was passed in the call. The
original library interface for Gibraltar had proved sufficient for the target RAID
system when originally designed, and was chosen to reduce register pressure in
the GPU by reducing the number of variables [3].

Ceph

call

Gibraltar

erasure coding

plugin

Gibraltar

CUDA

encode/decodereturn return

Interface to the Gibraltar Library

in the Ceph Plugin

Bufferlist is divided into k data shards

and m coding shards

Ceph Bufferlist Object

k 0 k 1 m n-2 m n-1

...

Fig. 1. Ceph calls the erasure coding module with a Bufferlist object containing the
stripe to be written to the object. The Plugin divides the Bufferlist into kdata shards
and adds m coding shards. Gibraltar is called to perform the coding or recovery.



4 Evaluation and Measurement

Here, we discuss the configuration of the system used to perform the experiments
and then we show the results that we obtained.

4.1 System Description

We conducted the measurements on a Dell R730 server with a GPU. Table 1
lists the configuration of our test system.

Table 1. Dell R730 with GPU Configuration

CPUs 2x Xeon E5-2650 v3 @ 2.3GHZ (HT-enabled: 40 threads)
RAM 128 GB 2133 MT/s RDIMM
Network 2 port Mellanox ConnectX-3 MCX354A-FCBS

Intel X520 DP 10Gb DA/SFP+, I350 DP 1Gb Ethernet
GPU NVIDIAR© K40m GPU
System Drives 2x 300GB 10K SAS 2

2x 200GB INTEL SSDSC2BG20 SATA
2x 400GB TOSHIBA PX02SMF040 SAS 3

4.2 Erasure Code Generation and Reconstruction Performance

Four experiments were conducted to understand the benefits of GPU erasure
coding for the campaign storage application. The first two experiments were run
using the ISA-L [35] erasure coding plugin included in Ceph v12.0.0 to provide
a baseline for reference to our Gibraltar plugin performance. The Cauchy algo-
rithm was selected for ISA-L because it was able to perform the encoding and
decoding with the number of shards we needed to test while the ISA-L Vander-
monde matrix implementation was limited to a maximum of 32 data shards in
Ceph in order to guarantee an MDS codec (see ErasureCodeIsa.cc). The Reed-
Solomon algorithm with the Vandermone matrix is well suited to computation
on a GPU using a precomputed lookup table which has been implemented in the
Gibraltar library. We selected a range of degrees of shardings between 20 and
128 based on experiments that are being conducted for Trinity campaign storage
at LANL. Coding and decoding tests for 1GB data size used degrees of sharding
ranging between 50 and 128. Erasure decoding for Gibraltar is currently limited
to 118 shards. We selected the number of coding shards for each data sharding
choice to meet the 1 to 5 ratio. Test data set sizes of 512MB and 1GB were
used for the experiments. We used the erasure coding benchmark tool included
with v12.0.0 of Ceph to run the test cases. The benchmark tool instantiates an
erasure coding profile as specified in our execution parameters and then runs
a series of encoding generations and reconstructions over a set of data. We set



the CPU core affinity to use a single core on the first CPU in the system be-
cause the NVIDIA R© GPU is connected to the PCI bus of this CPU socket. In
each experiment, the same CPU core was used for each erasure coding library.
A set of 10 iteration runs were made totaling 10GB of data for each run and
the average reported. The results in figure 2(a) show that the Gibraltar library
generates parity at 5 times the rate of ISA-L in the 50+10 test and at 7 times
ISA-L performance for 128+24 test. The ISA-L method was stable between the
512MB and 1GB data sizes but the Gibraltar method was 5% faster for the
1GB data size with 128 shards than the corresponding 512MB test.

In figures 2(b) and 2(c) we show the performance of reconstructing erasures
for our second experiment. Times are shown for reconstructing 1 and 4 erasures
in the configurations tested. At the 1GB test data size, Gibraltar performance
is 43% better than the ISA-L’s performance with the 50+10 test with 1 erasure
and is 18% faster than ISA-L’s 118+24 with 1 erasures. At the 1GB test data
size, Gibraltar performance is 3.77 times faster than the ISA-L performance
for 50+10 test with 4 erasures and is 2.98 times the performance of ISA-L with
4 erasures at the 118+24 test data size.

Figure 2(d) shows the shard sizes for the 512MB and 1GB data sizes that we
used in the experiments. A larger degree of sharding results in smaller chunks of
the data, lowering the bandwidth requirements to copy the shard to the OSD.

The third experiment measured the Gibraltar encoding execution using the
CUDA nvprof program. The same test configurations were used as in the first
two experiments. We ran 10 iterations with 1GB test data. For the 128+24
configuration we measured 25% of the time was spent copying the data to the
GPU memory, 70% of the time was spent generating the erasure coding shards
and the remaining 5% of the time was spent copying the coded shards back to
the host.

The fourth experiment measured the reconstruction using the 118+24 con-
figuration and 4 erasures. In the Gibraltar reconstruction, the Galois inversion
matrix is computed on the host and copied to the GPU for the specific erasures
that are present in the data. The Galois computation consumed 15% of the time.
We measured 55% of the time was spent copying the data to the GPU memory,
23% of the time was spent reconstructing the data and parity, and 4% of the
time was spent copying the 4 reconstructed data shards from the GPU memory
to the host.

These experiments show that the Gibraltar GPU library can sustain a high
bandwidth performance with larger degrees of sharding. For recovery, the Gibral-
tar GPU library can recover multiple erasures without loss of performance as
compared with the ISA-L library. Using higher performance GPUs like the
NVIDIA R© Pascal[23] with NVLink R© should provide even greater performance
where more bandwidth is required.
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5 Previous Work

Ceph provides an erasure coding plugin class as an extensible way for erasure
coding libraries to be implemented in the product. Currently, in release 12.0.0,
there are four erasure coding libraries implemented, namely: Jerasure [17], ISA-
L [35], lrc [26] and Shingled Erasure Code (SHEC) [22]. Our study has shown
that the Gibraltar library [5] can perform about half as well as these libraries
for a sharding degree less than 40 while Gibraltar performs better than these for
greater degrees of sharding. Khasymski et al., showed that GPU-assisted erasure
coding and reconstruction can be performed on the Lustre file system. Their work
required a software shim to integrate into Lustre which has no defined interface
for erasure coding libraries. Their work only implemented RAID 6, providing
m=2, but showed that the approach was feasible and can provide strong fault
tolerance [18] without depending on RAID subsystems and failover mechanisms
for availability.

6 Conclusion

We have implemented the Gibraltar GPU erasure coding library[4] as a plugin in
the Ceph product and shown that it provides high bandwidth for large degrees of
sharding. This capability can increase the value of cloud storage technologies in
HPC by increasing the number of coding shards to provide extended availability
and reducing the need for recovery of failed members. In these experiments,
the Gibraltar library performance proved much greater than ISA-L [35] on the
Intel E5-2650 v3 CPU. To achieve ISA-L performance measured here, it was
necessary to dedicate a single core of the host computer whereas the Gibraltar
library required 70% of the NVIDIA R© K40 GPU’s total capacity for generation
and 23% of the NVIDIA R© K40 GPU for reconstruction of 4 shards.

Our measurements show that the Ceph Gibraltar plugin can generate over
120 shards at nearly 1.5GB/s while the ISA-L plugin has dropped to less than
250MB/s. The Ceph Gibraltar plugin continues to reconstruct erasures at over
4GB/s for 1 or 4 erasures with 118 shards while the ISA-L Ceph plugin drops
from 3GB/s for 1 erasure to 1.5GB/s for 4 erasures. Ceph with the Gibraltar
plugin can meet or exceed the current requirements for Trinity campaign storage
with respect to erasure coding and reconstruction.

7 Future Work

The architecture for campaign storage at LANL moves all data between the
campaign storage system and the other storage systems via File Transfer Ap-
pliances (FTAs) [19]. Generation of erasure codes requires data locality and is
ideally performed on the file transfer appliance (FTA). The FTAs having GPU
accelerator devices can generate coding and reconstruct shards efficiently where
there is a high degree of sharding. Gibraltar can provide greater than m=2 par-
ity to support higher fault tolerance which is needed for larger capacity disk



drives. Using the FTAs to perform erasure coding and reconstruction in a Ceph
implementation will require modification of the current interfaces and concepts
for the Ceph erasure coding plugin architecture. The current implementation of
erasure coding in Ceph only provides for OSDs to perform erasure coding and
reconstruction.

A higher degree of sharding spreads the volume of data over a correspond-
ingly large number of disk drives. The input bandwidth to the FTA is fanned
out by the sharding degree resulting in the opportunity to use lower bandwidth
communications for the Object Storage Nodes without reducing throughput per-
formance of the FTA. This provides an opportunity for reducing the cost of
campaign storage. We are currently studying the configuration options of cam-
paign storage with regard to sharding degree, throughput, reliability and cost in
greater depth.
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